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Summary of the previous talk

Square-tiled surfaces
as a special case of
translation surfaces

Asymptotically as the number of squares grows, square-tiled surfaces
with fixed combinatorics equidistribute in the moduli space, and the
horizontal and vertical combinatorics become uncorrelated.

Multicurves on hyperbolic surfaces
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Multicurves VS Square-tiled surfaces

Frequencies of SQT VS multicurves on surfaces

For a square-tiled surface, the core curves of the horizontal cylinders
form a reduced multicurve on the surface.

Fact: The frequency c(γ0)/bg of multicurves of type γ0 and the
frequency c/Vol of SQTs of corresponding topological type coincide!

Examples: 1-component multicurves/ 1-cylinder SQTs, Separating
curves/separating cylinders, etc.
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Multicurves VS Square-tiled surfaces

Why frequencies are the same?

Hyperbolic surface with boundaries VS Ribbon graph

VolWP Mg,n(L1, . . . ,Ln) VS Ng,n(L1, . . . ,Ln)

(Mirzakhani) (Kontsevich)

∼
∑

α⊢3g−3+n

∫
Mg,n

ψα1
1 . . . ψαn

n

α1! . . . αn!
L2α1

1 . . . L2αn
n as Li → ∞
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Multicurves VS Square-tiled surfaces

Why are frequencies the same?

Cut hyperbolic surfaces along
geodesics:

Cut (half-translation) SQTs along
cylinders:

The pieces are glued together along the same ”stable” graph
(topological type of the multicurve / the decomposition into cylinders).
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Multicurves VS Square-tiled surfaces

Why are frequencies the same?

Mg,n(L) moduli space of genus g
hyperbolic surfaces with geodesic
boundaries of length
L = (L1, . . . ,Ln)
M∗

g,n(L) moduli space of genus g
ribbon graphs with face lengths L

[Bowditch-Epstein ’88] The spine map S is a homeomorphism
between Mg,n(L) and M∗

g,n(L)
[Do ’10] In the Gromov–Hausdorff topology, ∀Γ ∈ M∗

g,n(L),

lim
N→∞

1
N
S−1(NΓ) = Γ.

[Mondello ’09, Do ’10] The pullback of the normalized
Weil-Petersson form ω

N2 on Mg,n(NL) by f : Γ 7→ S−1(NΓ)
converges pointwise to the Kontsevich 2-form on M∗

g,n(L).
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Intersection numbers on Mg,n

Intersection numbers on Mg,n

Mg,n moduli space of Riemann surfaces X (smooth complex curves)
of genus g with n labeled marked points P1, . . .Pn
(complex orbifold of dimension 3g − 3 + n)

Mg,n Deligne-Mumford compactification
Holomorphic line bundle Li (fibers=cotangent complex lines to X at Pi )
First Chern class ψi = c1(Li)
For d1 + · · ·+ dn = 3g − 3 + n define

⟨τd⟩ = ⟨τd1 . . . τdn⟩g :=

∫
Mg,n

ψd1
1 . . . ψdn

n

Witten’s conjecture: they satisfy certain recurrence relations which are
equivalent to certain differential equations on the associated
generating function (“partition function in 2-dimensional quantum
gravity ”). Proved by M. Kontsevich; alternative proofs belong to A.
Okounkov and R. Pandharipande, to M. Mirzakhani, to M. Kazarian
and S. Lando (and there are more).
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Intersection numbers on Mg,n

Aggarwal’s proof of large genus asymptotics of
intersection numbers

Theorem (Aggarwal ’20)

As g → ∞ and n = o(g1/2),

⟨τd⟩g,n =

∫
Mg,n

∏
i

ψdi
i ≃ (2|d|+ 1)!!

24gg!
∏

i(2di + 1)!!

Explicit formula for n = 1 [Kontsevich].
Virasoro constraints

⟨τd⟩g,n+1 =
∑

i

Ai⟨τd(i)⟩g,n +
∑

j

Bj⟨τd(j)⟩g−1,n+2

+
∑
k ,l

Ck ,l⟨τd(k)⟩g′,n′+1⟨τd(l)⟩g−g′,n−n′+1.
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Interlude on random integers and random permutations

Interlude on random integers and random
permutations
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Interlude on random integers and random permutations

Number of prime divisors of random integers

Theorem (Prime Number Theorem)

An integer number n taken randomly in a large interval [1,N] is prime
with asymptotic probability logN

N .

Denote by ω(n) the number of prime divisors of an integer n counted
without multiplicities, i.e., for n = pm1

1 . . . pmk
k , ω(n) = k .

Theorem (Erdös–Kac CLT)

lim
N→∞

1
N

card

{
n ≤ N,

ω(n)− log logN√
log log

≤ x
}

=
1√
2π

∫ x

−∞
e−t2/2dt .

(rate of convergence described by A. Rényi and P. Turán (’58), and of
A. Selberg (’54))
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Interlude on random integers and random permutations

Number of cycles of a random permutation

Kn(σ) : number of cycles in the cycle decomposition of σ ∈ Sn.

P
(
Kn(σ) = k

)
= s(n,k)

n! , where s(n, k) is the unsigned Stirling
number of the first kind. In particular P

(
Kn(σ) = 1

)
= 1

n .
[Goncharov, ’44] As n → +∞:

E(Kn(σ)) = log n+γ+o(1) , V(Kn(σ)) = log n+γ−ζ(2)+o(1) ,

and CLT:

lim
n→+∞

1
n!

card

{
σ ∈ Sn

∣∣∣ Kn(σ)− log n√
log n

≤ x
}

=
1√
2π

∫ x

−∞
e− t2

2 dt .
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Interlude on random integers and random permutations

Number of cycles of a random permutation

For a random variable X taking values in Z+,

E(tX ) =
∞∑

k=1

P(X = k)tk .

Example : Poisson distribution of parameter λ

P(X = k) =
λke−λ

k !
, E(tX ) = eλ(t−1)

For X and Y independent, E(tX+Y ) = E(tX )E(tY ).

Definition
Xn converges mod-Poisson with parameters λn and limiting function
G(t) if ∃R > 1, εn → 0, ∀t ∈ C such that |t | < R,

E(tXn) = eλn(t−1)G(t)
(
1 + O(εn)

)
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Interlude on random integers and random permutations

Number of cycles of a random permutation

Theorem (Hwang ’94, Nikeghbali-Zeindler ’13)

Kn(σ) converge mod-Poisson with parameters λn = log(n) and limiting
function G(t) = t

Γ(1+t) , that is:
For any t ∈ C, as n → ∞ we have

E(tKn(σ)) = elog(n)·(t−1) · t
Γ(1 + t)

·
(

1 + O
(

1
n

))
.

Consequences for Kn(σ):
1 asymptotic expansion of moments,
2 central limit theorem,
3 local limit theorem,
4 large deviations.
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Shape of a random multicurve

Random multicurves and square-tiled surfaces

Fixing a genus g, choosing the uniform measure on all integral
multicurves of length at most L, and letting L tend to infinity we define a
“random multicurve” on a surface of genus g, via Mirzakhani’s result:

sX (L, Γ) ∼ B(X ) · c(γ)
bg

· L6g−6, where bg =
∑
[γ]

c(γ).

In this setting we interpret c(γ)
bg

as the probability for a random
multicurve to have type γ.

In the same way fixing a genus g, choosing the uniform measure on all
square-tiled surfaces with at most N squares and letting N tend to
infinity we define a ”random square-tiled surface via the following
asymptotics:

card{SQT with ≤ N squares of type Γ} ∼ c(Γ)N6g−6.

Here c(Γ)
Vol(Qg)

is the probability for a random square-tiled surface to have
type Γ.

E.Goujard (Göttingen) Random square-tiled surfaces Sept 2023 17 / 25



Shape of a random multicurve

Random multicurves and square-tiled surfaces

Fixing a genus g, choosing the uniform measure on all integral
multicurves of length at most L, and letting L tend to infinity we define a
“random multicurve” on a surface of genus g, via Mirzakhani’s result:

sX (L, Γ) ∼ B(X ) · c(γ)
bg

· L6g−6, where bg =
∑
[γ]

c(γ).

In this setting we interpret c(γ)
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Does a random multicurve separates the surface ?
What is the number of primitive components of a random
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Is a random multicurve primitive ?
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Shape of a random multicurve

Results: Non-separateness and primitivity

Theorem (Delecroix-G-Zograf-Zorich)

Consider a random multicurve γ =
∑k

i=1 miγi on a surface S of genus
g. Let γred = γ1 + · · ·+ γk be the underlying reduced multicurve. The
following asymptotic properties hold as g → +∞.
(a) The probability that γred does not separate the surface (i.e.

S − ⊔γi is connected) tends to 1.

(b’) For any positive integer m, the probability that all weights mi of a
random multicurve γ = m1γ1 + m2γ2 + . . . on a surface of genus g
are bounded by a positive integer m (i.e. that
m1 ≤ m,m2 ≤ m, . . . ) tends to

√
m

m+1 as g → +∞.

(c) For any sequence of positive integers kg with kg = o(log g) the
probability that a random multicurve γ =

∑kg
i=1 miγi is primitive (i.e.

that m1 = · · · = mkg = 1) tends to 1 as g → +∞.
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Shape of a random multicurve

Results : distribution of the number of components Kg

Theorem (Delecroix-G-Zograf-Zorich)

Kg(γ) converge mod-Poisson with parameters λg = log(6g−6)
2 and

limiting function G(t) =
t ·Γ(3

2 )

Γ(1+ t
2 )

as g → ∞, that is:

For all t ∈ C such that |t | < 8
7 the following asymptotic relation is valid

as g → +∞:

E
(

tKg(γ)
)
:=

3g−3∑
k=1

P(Kg(γ) = k)tk = eλg(t−1) ·
t · Γ(3

2)

Γ(1 + t
2)

(1 + o(1)) ,

where λg = log(6g−6)
2 . Moreover, for any compact set U in the open

disc |t | < 8
7 there exists δ(U) > 0, such that for all t ∈ U the error term

has the form O(g−δ(U)).
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Shape of a random multicurve

Results: Mod-Poisson convergence

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

g=14

p14(k)
(Poilog(78)/2,Γ(1/2))

Exact distribution of number of components (coeffs of E(tKg(γ)))
Mod-Poisson convergence (coeffs of eλg(t−1) · G(t))
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Shape of a random multicurve

Consequence 1: CLT for number of components Kg

Theorem (Delecroix-G-Zograf-Zorich)

Choose a non-separating simple closed curve ρg on a surface of
genus g. Denote by ι(ρg , γ) the geometric intersection number of ρg
and γ. The centered and rescaled distribution defined by the counting
function Kg(γ) tends to the normal distribution:

lim
g→+∞

√
3πg

2
· 12g · (4g − 4)! ·

(
9
8

)2g−2

lim
N→+∞

1
N6g−6 card

({
γ ∈ MLg(Z)

∣∣∣∣ ι(ρg , γ) ≤ N and

Kg(γ)− log g
2√

log g
2

≤ x
}
/Stab(ρg)

)
=

1√
2π

∫ x

−∞
e− t2

2 dt .
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Shape of a random multicurve

Consequence 2: local limit theorem

Theorem (Delecroix-G-Zograf-Zorich)

Let λg = log(6g − 6)/2. For any x ∈ [0,1.23) we have uniformly in
0 ≤ k ≤ xλ

P
(
Kg(γ) = k + 1

)
=

e−λgλk
g

k !
·

(
G
(

k
λg

)
+ O

(
k
λ2

g

))
.

+ Explicit formula for the tail P
(
Kg(γ) > xλg + 1

)
Expansion of the moments, in particular:

E(Kg(γ)) = λg +
γ

2
+ log 2 + o(1) ,

V(Kg(γ)) = λg +
γ

2
+ log 2 − 3

4
ζ(2) + o(1) ,
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Shape of a random multicurve

Consequence 2: local limit theorem

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

g=14

p14(k)
(Poilog(78)/2,Γ(1/2))

Exact distribution of number of components: pg(k) = P(Kg(γ) = k)

Local limit theorem: e−λgλk
g

k! G
(

k
λg

)
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Shape of a random multicurve

Comparison with random permutations

Number of cycles Number of components
of random permutations of random multicurves
[Goncharov], [Hwang] λg = log(6g−6)

2
µn = log n γ̃ = γ

2 + log(2)

G̃(t) = t
Γ(1+t) G(t) =

t ·Γ(3
2 )

Γ(1+ t
2 )

E(K ) µn + γ + o(1) λg + γ̃ + o(1)
V(K ) µn + γ − ζ(2) + o(1) λg + γ̃ − 3

4ζ(2) + o(1)
CLT ok ok
E(tK ) eµn(t−1)G̃(t) (1 + o(1)) eλg(t−1)G(t) (1 + o(1))

pK (k + 1) e−µnµk
n

k!

(
G̃( k

µn
) + O

(
k
µ2

n

))
e−λgλk

g
k!

(
G( k

λg
) + O

(
k
λ2

g

))
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