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Summary of the previous talk

as a special case of
Square-tiled surfaces translation surfaces
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Asymptotically as the number of squares grows, square-tiled surfaces
with fixed combinatorics equidistribute in the moduli space, and the
horizontal and vertical combinatorics become uncorrelated.
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Multicurves VS Square-tiled surfaces

Frequencies of SQT VS multicurves on surfaces

For a square-tiled surface, the core curves of the horizontal cylinders
form a reduced multicurve on the surface.
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Multicurves VS Square-tiled surfaces

Frequencies of SQT VS multicurves on surfaces

For a square-tiled surface, the core curves of the horizontal cylinders
form a reduced multicurve on the surface.

Fact: The frequency c(vo)/by of multicurves of type o and the
frequency ¢/ Vol of SQTs of corresponding topological type coincide!

Examples: 1-component multicurves/ 1-cylinder SQTs, Separating
curves/separating cylinders, etc.
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Multicurves VS Square-tiled surfaces

Why frequencies are the same?

Hyperbolic surface with boundaries VS Ribbon graph

(=

VOIWPMg7n(L1,... ,Ln) VS Ng7n(L1,.. .,Ln)
(Mirzakhani) (Kontsevich)
" aq Qan
~ Z fMg’" ! ? L?O” ... L%a" as Lj — o0
aq!. .. ap!
atF3g—3+n
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Multicurves VS Square-tiled surfaces

Why are frequencies the same?

Cut hyperbolic surfaces along Cut (half-translation) SQTs along
geodesics: cylinders:

The pieces are glued together along the same “stable” graph
(topological type of the multicurve / the decomposition into cylinders).
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Multicurves VS Square-tiled surfaces

Why are frequencies the same?

Mg.n(L) moduli space of genus g
hyperbolic surfaces with geodesic

I boundaries of length
L=(Ly,...,Lp)
\ ’ M. n(L) moduli space of genus g
ribbon graphs with face lengths L

@ [Bowditch-Epstein '88] The spine map S is a homeomorphism
between Mg n(L) and Mg (L)

@ [Do '10] In the Gromov—Hausdorff topology, VI € Mg ,(L),

1
A}inm NS (NT)=T.

@ [Mondello 09, Do ’10] The pullback of the normalized
Weil-Petersson form & on Mg 5(NL) by f : T — S~1(NT)
converges pointwise to the Kontsevich 2-form on Mg ,(L).
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Intersection numbers on Mg
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Intersection numbers on Mg

Intersection numbers on Mg ,

Mg n moduli space of Riemann surfaces X (smooth complex curves)
of genus g with n labeled marked points Ps, ... P,
(complex orbifold of dimension 3g — 3 + n)
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Intersection numbers on Mg ,

Mg n moduli space of Riemann surfaces X (smooth complex curves)
of genus g with n labeled marked points Ps, ... P,

(complex orbifold of dimension 3g — 3 + n)

Mg » Deligne-Mumford compactification
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Intersection numbers on Mg

Intersection numbers on Mg ,

Mg n moduli space of Riemann surfaces X (smooth complex curves)
of genus g with n labeled marked points Ps, ... P,

(complex orbifold of dimension 3g — 3 + n)

Mg » Deligne-Mumford compactification

Holomorphic line bundle L; (fibers=cotangent complex lines to X at P;)
First Chern class 1; = ¢ (L))

For dy +---+ d, = 3g — 3 + ndefine

(1) = (Tdy - - - Tdy)g = /M¢1d1 by

Witten’s conjecture: they satisfy certain recurrence relations which are
equivalent to certain differential equations on the associated
generating function (“partition function in 2-dimensional quantum
gravity ”). Proved by M. Kontsevich; alternative proofs belong to A.
Okounkov and R. Pandharipande, to M. Mirzakhani, to M. Kazarian
and S. Lando (and there are more).
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Intersection numbers on Mg

Aggarwal’s proof of large genus asymptotics of
intersection numbers

Theorem (Aggarwal '20)

As g — oo and n = o(g'/?),

d (2/d] +1)!!
(T = (U
g = /MH 24991 [[,(2d + 1)1

Explicit formula for n = 1 [Kontsevich].
Virasoro constraints

(Ta)gne1 = _ Ailtgn)an+ Y BilTqn)g—1,nr2
i J
+ Z Ck./<Td(k>>g/.n/ 1 <Td(/)>g g/ ,n—n'+1-
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Interlude on random integers and random permutations

Interlude on random integers and random
permutations
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Interlude on random integers and random permutations

Number of prime divisors of random integers

Theorem (Prime Number Theorem)

An integer number n taken randomly in a large interval [1, N] is prime

with asymptotic probability &N .

Denote by w(n) the number of prime divisors of an integer n counted
without multiplicities, i.e., for n = pf" ...p,Tk, w(n) = k.

Theorem (Erdés—Kac CLT)

1 w(n) — loglog N 1 /X _/o
lim —card{n<N <xr=—— [ et
Noae N { - V/log log - Vor J o

(rate of convergence described by A. Rényi and P. Turan (’58), and of
A. Selberg ('54))
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Number of cycles of a random permutation

Kn(o) : number of cycles in the cycle decomposition of o € S,.
o P(Kn(o) = k) = 325 'where s(n, k) is the unsigned Stlrllng
number of the first klnd In particular P(Kn(o) = 1) =
@ [Goncharov, 44] As n — +oc:

n

E(Kn(0)) =logn+y+0(1),  V(Kn(0)) = log n+y—((2)+0(1),

and CLT:

. 1 Kn(O') — |Og ” /
m — c N7 e 2
li | card {O’ Sn | \/7 e dt
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Interlude on random integers and random permutations

Number of cycles of a random permutation

For a random variable X taking values in Z,
E(tX) =Y P(X = k)",
k=1

Example : Poisson distribution of parameter A
Meg=2

k!’
For X and Y independent, E(tX+Y) = E(tX)E(tY).

P(X = k) = E(tX) = et

Definition
Xn converges mod-Poisson with parameters A, and limiting function
G(t)if 3R >1,e, — 0, Vt € C such that |t < R,

E(t*) = eI G(1) (1 + O(en))
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Number of cycles of a random permutation

Theorem (Hwang ‘94, Nikeghbali-Zeindler ’13)

Kn(o) converge mod Poisson with parameters A\, = log(n) and limiting
function G(t) = EE=)] H) that is:

Forany t € C, as n — oo we have

t 1
Kn(o)y — glog(n)-(t=1) . __° | 2
E(t )=¢ 1) (1+O<n>>.

Consequences for Kp(o):

@ asymptotic expansion of moments,
© central limit theorem,

© local limit theorem,

© large deviations.
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Shape of a random multicurve
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Shape of a random multicurve

Random multicurves and square-tiled surfaces

Fixing a genus g, choosing the uniform measure on all integral
multicurves of length at most L, and letting L tend to infinity we define a
“random multicurve” on a surface of genus g, via Mirzakhani’s result:

sx(L,T) ~ B(X) - C[() 1) . j6g-6 , where by = > ¢().
9
[]

In this setting we mterpret ) as the probability for a random
multicurve to have type ~.
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Shape of a random multicurve

Random multicurves and square-tiled surfaces

Fixing a genus g, choosing the uniform measure on all integral
multicurves of length at most L, and letting L tend to infinity we define a
“random multicurve” on a surface of genus g, via Mirzakhani’s result:

sx(L,T) ~ B(X) - C[() 1) . j6g-6 , where by = > ¢().
9
[]

In this setting we mterpret ) as the probability for a random
multicurve to have type ~.

@ Does a random multicurve separates the surface ?

@ What is the number of primitive components of a random

multicurve ?
@ Is a random multicurve primitive ?
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Random multicurves and square-tiled surfaces

In the same way fixing a genus g, choosing the uniform measure on all
square-tiled surfaces with at most N squares and letting N tend to

infinity we define a "random square-tiled surface via the following
asymptotics:

card{SQT with < N squares of type '} ~ ¢(I)N®9~5.

Here % is the probability for a random square-tiled surface to have

type I'.
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Results: Non-separateness and primitivity

Theorem (Delecroix-G-Zograf-Zorich)

Consider a random multicurve v = ZL m;v; on a surface S of genus
9. Letveg = v1 + - - - + vk be the underlying reduced multicurve. The
following asymptotic properties hold as g — +c.

(a) The probability that ~,.q does not separate the surface (i.e.
S — Ly, is connected) tends to 1.
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Results: Non-separateness and primitivity

Theorem (Delecroix-G-Zograf-Zorich)

Consider a random multicurve v = ZL mj~; on a surface S of genus
9. Letvieg = 711 + - -+ + Y be the underlying reduced multicurve. The
following asymptotic properties hold as g — +c.
(a) The probability that v,.q does not separate the surface (i.e.
S — Ly; is connected) tends to 1.
(b) The probability that ~y is primitive (i.e. thatmy =mp =---=1)
tends to §
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Results: Non-separateness and primitivity

Theorem (Delecroix-G-Zograf-Zorich)

Consider a random multicurve v = ZL mj~; on a surface S of genus
9. Letvieg = 711 + - -+ + Y be the underlying reduced multicurve. The
following asymptotic properties hold as g — +c.

(a) The probability that v,.q does not separate the surface (i.e.
S — Ly; is connected) tends to 1.

(b) The probability that ~ is primitive (i.e. thatmy =mo =---=1)
tends to @

(b’) For any positive integer m, the probability that all weights m; of a
random multicurve v = my~y1 + Ma7y2 + ... on a surface of genus g
are bounded by a positive integer m (i.e. that

my <m,my<m,...)tends to /=" as g — +oc.
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Shape of a random multicurve

Results: Non-separateness and primitivity

Theorem (Delecroix-G-Zograf-Zorich)

Consider a random multicurve v = ZL m;v; on a surface S of genus
9. Letveg = v1 + - - - + vk be the underlying reduced multicurve. The
following asymptotic properties hold as g — +c.
(a) The probability that ~,.q does not separate the surface (i.e.
S — Ly, is connected) tends to 1.
(b’) For any positive integer m, the probability that all weights m; of a
random multicurve v = myyy + Moo + ... on a surface of genus g
are bounded by a positive integer m (i.e. that

my <m,my <m,...)tends to /- as g — +oc.
(c) For any sequence of positive integers kg with kg = o(log g) the

probability that a random multicurve v = Zfi 1 Myy; is primitive (i.e.
thatmy =---=my, =1)tendsto1 as g — +oo.
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Results : distribution of the number of components K,

Theorem (Delecroix-G-Zograf-Zorich)

Kgy(v) converge mod-Poisson with parameters \g = w and
”(2)
r(i+3)
For all t € C such that |t| < & the following asymptotic relation is valid
as g — +oo:

limiting function G(t) = as g — oo, thatis:

E ( Ko(v) ._ngs 0 = helt—1) l"l_(g)
(t ) = kz:; P(Kg(y) = k)t =e m (1 +o(1)) |

where \q M Moreover, for any compact set U in the open
disc |t| < & there exists §(U) > 0, such that for all t € U the error term
has the form O(g—0)).
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Shape of a random multicurve

Results: Mod-Poisson convergence

g=14
K
w N xxp14 (k)

i l,x,‘ Ay ++(P0110g(78 )/25 (1/2))
024 %
014 % X

1 %* *—

0 - T T T T T T

1 2 3 4 5 6 7 8 9 10

Exact distribution of number of components (coeffs of E(t%¢(?)))
Mod-Poisson convergence (coeffs of e*(=1) . G(t))
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Shape of a random multicurve

Consequence 1: CLT for number of components K,

Theorem (Delecroix-G-Zograf-Zorich)

Choose a non-separating simple closed curve pg on a surface of
genus g. Denote by «(pg,y) the geometric intersection number of pg
and ~. The centered and rescaled distribution defined by the counting
function Kq(y) tends to the normal distribution:

: 3rg 9\292
2 . ). (=2
im %5 12 ea e ()

1
NiTw NBo— 5 card ({fy € MLy(Z)

[
Kg(V) — &g

\/Egz<x}/5tab(pg) F/ e Zat.
2

Random square-tiled surfaces Sept 2023
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Consequence 2: local limit theorem

Theorem (Delecroix-G-Zograf-Zorich)

Let \g = log(6g — 6)/2. For any x € [0,1.23) we have uniformly in
0< k< xA

—Ag \K
P(Kg(r) =k+1) = ek!g ‘ (G(fg)JrO(g))

+ Explicit formula for the tail P(Kg(v) > xAg + 1)

Expansion of the moments, in particular:

E(Kg(y)) = Ag + £ +log2 + o(1),

2
~y 3
V(Kg(7)) = Ag + 5 +log2 — 4 ¢(2) + o(1),
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Shape of a random multicurve

Consequence 2: local limit theorem

g=14
')ﬁ\
¥ N xxp1y (k)
] x"l‘ \x ++(P0110g(78 )/2s (1/2))
024 ~
014 % X
\%\
0 - T T T T T *‘*---*__H

1 2 3 4 5 6 7 8 9 10

Exact distribution of number of components: py(k) = P(Kg(v) = k)
— Kk
Local limit theorem: eki‘:ugG (Tkg)
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Shape of a random multicurve

Comparison with random permutations

Number of cycles
of random permutations

[Goncharov], [Hwang]

Number of components

of random multicurves
Ay = log(69—6)
g 2

pn = logn 5 = 3 +log(2)
N S
G(t) = g G(t) = el
E(K) pn+ v+ 0o(1) Ag+75+0(1)
V(K) pn+v —¢(2) + o(1) Ag +7—2¢(2) + o(1)
CLT ok ok
E(tX) eNG(t) (1+0(1) | (DG (1 +o(1))
pr(k +1) | S5 (G(E) +0 () | (GG + 0 (%))
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Shape of a random multicurve

0.2

genus 50
—genus 80
—genus 100
—genus 160
—genus 200

genus 320
—genus 400
—genus 640
—genus 800
—genus 1600
—genus 3200
genus 6400
genus 10000
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