Random square-tiled surfaces of large genus and random multicurves on surfaces of large genus

with V. Delecroix, P. Zograf, A. Zorich

Elise Goujard - IMB

Göttingen WiMGO conference 2023

Summary of the previous talk

Square-tiled surfaces

Summary of the previous talk

Square-tiled surfaces

as a special case of translation surfaces

Summary of the previous talk

Square-tiled surfaces

as a special case of translation surfaces

Asymptotically as the number of squares grows, square-tiled surfaces with fixed combinatorics equidistribute in the moduli space, and the horizontal and vertical combinatorics become uncorrelated.

Summary of the previous talk

Square-tiled surfaces

as a special case of translation surfaces

Multicurves on hyperbolic surfaces

Multicurves VS Square-tiled surfaces

Frequencies of SQT VS multicurves on surfaces

For a square-tiled surface, the core curves of the horizontal cylinders form a reduced multicurve on the surface.

Frequencies of SQT VS multicurves on surfaces

For a square-tiled surface, the core curves of the horizontal cylinders form a reduced multicurve on the surface.

Fact: The frequency $\boldsymbol{c}\left(\gamma_{0}\right) / b_{g}$ of multicurves of type γ_{0} and the frequency $c /$ Vol of SQTs of corresponding topological type coincide!
Examples: 1-component multicurves/ 1-cylinder SQTs, Separating curves/separating cylinders, etc.

Why frequencies are the same?

Hyperbolic surface with boundaries VS Ribbon graph

$\operatorname{Vol}_{w P} \mathcal{M}_{g, n}\left(L_{1}, \ldots, L_{n}\right) \quad$ VS $\quad N_{g, n}\left(L_{1}, \ldots, L_{n}\right)$
(Mirzakhani)

(Kontsevich)

$$
\sim \sum_{\alpha \vdash 3 g-3+n} \frac{\int_{\overline{\mathcal{M}}_{g, n}} \psi_{1}^{\alpha_{1}} \ldots \psi_{n}^{\alpha_{n}}}{\alpha_{1}!\ldots \alpha_{n}!} L_{1}^{2 \alpha_{1}} \ldots L_{n}^{2 \alpha_{n}} \text { as } L_{i} \rightarrow \infty
$$

Why are frequencies the same?

Cut hyperbolic surfaces along geodesics:

Cut (half-translation) SQTs along cylinders:

The pieces are glued together along the same "stable" graph (topological type of the multicurve / the decomposition into cylinders).

Why are frequencies the same?

$\mathcal{M}_{g, n}(\mathbf{L})$ moduli space of genus g hyperbolic surfaces with geodesic boundaries of length
$\mathbf{L}=\left(L_{1}, \ldots, L_{n}\right)$
$\mathcal{M}_{g, n}^{*}(\mathbf{L})$ moduli space of genus g ribbon graphs with face lengths \mathbf{L}

- [Bowditch-Epstein '88] The spine map \mathcal{S} is a homeomorphism between $\mathcal{M}_{g, n}(\mathbf{L})$ and $\mathcal{M}_{g, n}^{*}(\mathbf{L})$
- [Do '10] In the Gromov-Hausdorff topology, $\forall \Gamma \in \mathcal{M}_{g, n}^{*}(\mathbf{L})$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \mathcal{S}^{-1}(N \Gamma)=\Gamma
$$

- [Mondello '09, Do '10] The pullback of the normalized Weil-Petersson form $\frac{\omega}{N^{2}}$ on $\mathcal{M}_{g, n}(N \mathrm{~L})$ by $f: \Gamma \mapsto \mathcal{S}^{-1}(N \Gamma)$ converges pointwise to the Kontsevich 2-form on $\mathcal{M}_{g, n}^{*}(\mathrm{~L})$.

Intersection numbers on $\mathcal{M}_{g, n}$

Intersection numbers on $\mathcal{M}_{g, n}$

$\mathcal{M}_{g, n}$ moduli space of Riemann surfaces X (smooth complex curves) of genus g with n labeled marked points $P_{1}, \ldots P_{n}$ (complex orbifold of dimension $3 g-3+n$)

Intersection numbers on $\mathcal{M}_{g, n}$

$\mathcal{M}_{g, n}$ moduli space of Riemann surfaces X (smooth complex curves) of genus g with n labeled marked points $P_{1}, \ldots P_{n}$ (complex orbifold of dimension $3 g-3+n$) $\overline{\mathcal{M}_{g, n}}$ Deligne-Mumford compactification

Intersection numbers on $\mathcal{M}_{g, n}$

$\mathcal{M}_{g, n}$ moduli space of Riemann surfaces X (smooth complex curves) of genus g with n labeled marked points $P_{1}, \ldots P_{n}$ (complex orbifold of dimension $3 g-3+n$)
$\overline{\mathcal{M}_{g, n}}$ Deligne-Mumford compactification
Holomorphic line bundle L_{i} (fibers=cotangent complex lines to X at P_{i})
First Chern class $\psi_{i}=c_{1}\left(L_{i}\right)$
For $d_{1}+\cdots+d_{n}=3 g-3+n$ define

$$
\left\langle\tau_{\mathbf{d}}\right\rangle=\left\langle\tau_{d_{1}} \ldots \tau_{d_{n}}\right\rangle_{g}:=\int_{\overline{\mathcal{M}_{g, n}}} \psi_{1}^{d_{1}} \ldots \psi_{n}^{d_{n}}
$$

Witten's conjecture: they satisfy certain recurrence relations which are equivalent to certain differential equations on the associated generating function ("partition function in 2-dimensional quantum gravity "). Proved by M. Kontsevich; alternative proofs belong to A. Okounkov and R. Pandharipande, to M. Mirzakhani, to M. Kazarian and S. Lando (and there are more).

Aggarwal's proof of large genus asymptotics of intersection numbers

Theorem (Aggarwal '20)
As $g \rightarrow \infty$ and $n=o\left(g^{1 / 2}\right)$,

$$
\left\langle\tau_{\boldsymbol{d}}\right\rangle_{g, n}=\int_{\overline{\mathcal{M}_{g, n}}} \prod_{i} \psi_{i}^{d_{i}} \simeq \frac{(2|\boldsymbol{d}|+1)!!}{24{ }^{g} g!\prod_{i}\left(2 d_{i}+1\right)!!}
$$

Explicit formula for $n=1$ [Kontsevich].
Virasoro constraints

$$
\begin{aligned}
\left\langle\tau_{\mathbf{d}}\right\rangle_{g, n+1}= & \sum_{i} A_{i}\left\langle\tau_{\mathbf{d}^{(i)}}\right\rangle_{g, n}+\sum_{j} B_{j}\left\langle\tau_{\mathbf{d}^{(j)}}\right\rangle_{g-1, n+2} \\
& +\sum_{k, l} C_{k, l}\left\langle\tau_{\mathbf{d}^{(k)}}\right\rangle_{g^{\prime}, n^{\prime}+1}\left\langle\tau_{\mathbf{d}^{(l)}}\right\rangle_{g-g^{\prime}, n-n^{\prime}+1}
\end{aligned}
$$

Interlude on random integers and random permutations

Number of prime divisors of random integers

Theorem (Prime Number Theorem)

An integer number n taken randomly in a large interval $[1, N]$ is prime with asymptotic probability $\frac{\log N}{N}$.

Denote by $\omega(n)$ the number of prime divisors of an integer n counted without multiplicities, i.e., for $n=p_{1}^{m_{1}} \ldots p_{k}^{m_{k}}, \omega(n)=k$.

Theorem (Erdös-Kac CLT)

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \operatorname{card}\left\{n \leq N, \frac{\omega(n)-\log \log N}{\sqrt{\log \log }} \leq x\right\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t
$$

(rate of convergence described by A. Rényi and P. Turán ('58), and of A. Selberg ('54))

Number of cycles of a random permutation

$\mathrm{K}_{n}(\sigma)$: number of cycles in the cycle decomposition of $\sigma \in S_{n}$.

- $\mathbb{P}\left(\mathrm{K}_{n}(\sigma)=k\right)=\frac{s(n, k)}{n!}$, where $s(n, k)$ is the unsigned Stirling number of the first kind. In particular $\mathbb{P}\left(\mathrm{K}_{n}(\sigma)=1\right)=\frac{1}{n}$.
- [Goncharov, '44] As $n \rightarrow+\infty$:

$$
\mathbb{E}\left(\mathrm{K}_{n}(\sigma)\right)=\log n+\gamma+o(1), \quad \mathbb{V}\left(\mathrm{K}_{n}(\sigma)\right)=\log n+\gamma-\zeta(2)+o(1)
$$

and CLT:

$$
\lim _{n \rightarrow+\infty} \frac{1}{n!} \operatorname{card}\left\{\sigma \in S_{n} \left\lvert\, \frac{K_{n}(\sigma)-\log n}{\sqrt{\log n}} \leq x\right.\right\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{t^{2}}{2}} d t
$$

Number of cycles of a random permutation

For a random variable X taking values in \mathbb{Z}_{+},

$$
\mathbb{E}\left(t^{X}\right)=\sum_{k=1}^{\infty} \mathbb{P}(X=k) t^{k}
$$

Example : Poisson distribution of parameter λ

$$
\mathbb{P}(X=k)=\frac{\lambda^{k} e^{-\lambda}}{k!}, \quad \mathbb{E}\left(t^{X}\right)=e^{\lambda(t-1)}
$$

For X and Y independent, $\mathbb{E}\left(t^{X+Y}\right)=\mathbb{E}\left(t^{X}\right) \mathbb{E}\left(t^{Y}\right)$.
Definition
X_{n} converges mod-Poisson with parameters λ_{n} and limiting function $G(t)$ if $\exists R>1, \varepsilon_{n} \rightarrow 0, \forall t \in \mathbb{C}$ such that $|t|<R$,

$$
\mathbb{E}\left(t^{X_{n}}\right)=e^{\lambda_{n}(t-1)} G(t)\left(1+O\left(\varepsilon_{n}\right)\right)
$$

Number of cycles of a random permutation

Theorem (Hwang '94, Nikeghbali-Zeindler '13)
$\mathrm{K}_{n}(\sigma)$ converge mod-Poisson with parameters $\lambda_{n}=\log (n)$ and limiting function $G(t)=\frac{t}{\Gamma(1+t)}$, that is:
For any $t \in \mathbb{C}$, as $n \rightarrow \infty$ we have

$$
\mathbb{E}\left(t^{K_{n}(\sigma)}\right)=e^{\log (n) \cdot(t-1)} \cdot \frac{t}{\Gamma(1+t)} \cdot\left(1+O\left(\frac{1}{n}\right)\right) .
$$

Consequences for $\mathrm{K}_{n}(\sigma)$:

- asymptotic expansion of moments,
(2) central limit theorem,
(3) local limit theorem,
(1) large deviations.

Shape of a random multicurve

Random multicurves and square-tiled surfaces

Fixing a genus g, choosing the uniform measure on all integral multicurves of length at most L, and letting L tend to infinity we define a "random multicurve" on a surface of genus g , via Mirzakhani's result:

$$
s_{X}(L, \Gamma) \sim B(X) \cdot \frac{c(\gamma)}{b_{g}} \cdot L^{6 g-6}, \text { where } b_{g}=\sum_{[\gamma]} c(\gamma) .
$$

In this setting we interpret $\frac{c(\gamma)}{b_{g}}$ as the probability for a random multicurve to have type γ.

Random multicurves and square-tiled surfaces

Fixing a genus g, choosing the uniform measure on all integral multicurves of length at most L, and letting L tend to infinity we define a "random multicurve" on a surface of genus g , via Mirzakhani's result:

$$
s_{X}(L, \Gamma) \sim B(X) \cdot \frac{c(\gamma)}{b_{g}} \cdot L^{6 g-6}, \text { where } b_{g}=\sum_{[\gamma]} c(\gamma) .
$$

In this setting we interpret $\frac{c(\gamma)}{b_{g}}$ as the probability for a random multicurve to have type γ.

- Does a random multicurve separates the surface?
- What is the number of primitive components of a random multicurve?
- Is a random multicurve primitive?

Random multicurves and square-tiled surfaces

In the same way fixing a genus g, choosing the uniform measure on all square-tiled surfaces with at most N squares and letting N tend to infinity we define a "random square-tiled surface via the following asymptotics:
$\operatorname{card}\{S Q T$ with $\leq N$ squares of type $\Gamma\} \sim c(\Gamma) N^{6 g-6}$.
Here $\frac{c(\Gamma)}{V_{0}\left(Q_{g}\right)}$ is the probability for a random square-tiled surface to have type Γ.

Results: Non-separateness and primitivity

Theorem (Delecroix-G-Zograf-Zorich)
Consider a random multicurve $\gamma=\sum_{i=1}^{k} m_{i} \gamma_{i}$ on a surface S of genus g. Let $\gamma_{\text {red }}=\gamma_{1}+\cdots+\gamma_{k}$ be the underlying reduced multicurve. The following asymptotic properties hold as $g \rightarrow+\infty$.
(a) The probability that $\gamma_{\text {red }}$ does not separate the surface (i.e. $S-\sqcup \gamma_{i}$ is connected) tends to 1 .

Results: Non-separateness and primitivity

Theorem (Delecroix-G-Zograf-Zorich)

Consider a random multicurve $\gamma=\sum_{i=1}^{k} m_{i} \gamma_{i}$ on a surface S of genus g. Let $\gamma_{\text {red }}=\gamma_{1}+\cdots+\gamma_{k}$ be the underlying reduced multicurve. The following asymptotic properties hold as $g \rightarrow+\infty$.
(a) The probability that $\gamma_{\text {red }}$ does not separate the surface (i.e. $S-\sqcup \gamma_{i}$ is connected) tends to 1.
(b) The probability that γ is primitive (i.e. that $m_{1}=m_{2}=\cdots=1$) tends to $\frac{\sqrt{2}}{2}$.

Results: Non-separateness and primitivity

Theorem (Delecroix-G-Zograf-Zorich)

Consider a random multicurve $\gamma=\sum_{i=1}^{k} m_{i} \gamma_{i}$ on a surface S of genus g. Let $\gamma_{\text {red }}=\gamma_{1}+\cdots+\gamma_{k}$ be the underlying reduced multicurve. The following asymptotic properties hold as $g \rightarrow+\infty$.
(a) The probability that $\gamma_{\text {red }}$ does not separate the surface (i.e. $S-\sqcup \gamma_{i}$ is connected) tends to 1 .
(b) The probability that γ is primitive (i.e. that $m_{1}=m_{2}=\cdots=1$) tends to $\frac{\sqrt{2}}{2}$.
(b') For any positive integer m, the probability that all weights m_{i} of a random multicurve $\gamma=m_{1} \gamma_{1}+m_{2} \gamma_{2}+\ldots$ on a surface of genus g are bounded by a positive integer m (i.e. that $\left.m_{1} \leq m, m_{2} \leq m, \ldots\right)$ tends to $\sqrt{\frac{m}{m+1}}$ as $g \rightarrow+\infty$.

Results: Non-separateness and primitivity

Theorem (Delecroix-G-Zograf-Zorich)
Consider a random multicurve $\gamma=\sum_{i=1}^{k} m_{i} \gamma_{i}$ on a surface S of genus g. Let $\gamma_{\text {red }}=\gamma_{1}+\cdots+\gamma_{k}$ be the underlying reduced multicurve. The following asymptotic properties hold as $g \rightarrow+\infty$.
(a) The probability that $\gamma_{\text {red }}$ does not separate the surface (i.e. $S-\sqcup \gamma_{i}$ is connected) tends to 1 .
(b') For any positive integer m, the probability that all weights m_{i} of a random multicurve $\gamma=m_{1} \gamma_{1}+m_{2} \gamma_{2}+\ldots$ on a surface of genus g are bounded by a positive integer m (i.e. that $\left.m_{1} \leq m, m_{2} \leq m, \ldots\right)$ tends to $\sqrt{\frac{m}{m+1}}$ as $g \rightarrow+\infty$.
(c) For any sequence of positive integers k_{g} with $k_{g}=o(\log g)$ the probability that a random multicurve $\gamma=\sum_{i=1}^{k_{g}} m_{i} \gamma_{i}$ is primitive (i.e. that $m_{1}=\cdots=m_{k g}=1$) tends to 1 as $g \rightarrow+\infty$.

Results : distribution of the number of components K_{g}

Theorem (Delecroix-G-Zograf-Zorich)
$\mathrm{K}_{g}(\gamma)$ converge mod-Poisson with parameters $\lambda_{g}=\frac{\log (6 g-6)}{2}$ and limiting function $G(t)=\frac{t \cdot \Gamma\left(\frac{3}{2}\right)}{\Gamma\left(1+\frac{t}{2}\right)}$ as $g \rightarrow \infty$, that is:
For all $t \in \mathbb{C}$ such that $|t|<\frac{8}{7}$ the following asymptotic relation is valid as $g \rightarrow+\infty$:

$$
\mathbb{E}\left(t^{\mathrm{K} g(\gamma)}\right):=\sum_{k=1}^{3 g-3} \mathbb{P}\left(\mathrm{~K}_{g}(\gamma)=k\right) t^{k}=e^{\lambda_{g}(t-1)} \cdot \frac{t \cdot \Gamma\left(\frac{3}{2}\right)}{\Gamma\left(1+\frac{t}{2}\right)}(1+o(1))
$$

where $\lambda_{g}=\frac{\log (6 g-6)}{2}$. Moreover, for any compact set U in the open disc $|t|<\frac{8}{7}$ there exists $\delta(U)>0$, such that for all $t \in U$ the error term has the form $O\left(g^{-\delta(U)}\right)$.

Results: Mod-Poisson convergence

Exact distribution of number of components (coeffs of $\mathbb{E}\left(t^{K}(\gamma)\right)$) Mod-Poisson convergence (coeffs of $\left.e^{\lambda_{g}(t-1)} \cdot G(t)\right)$

Consequence 1: CLT for number of components K_{g}

Theorem (Delecroix-G-Zograf-Zorich)
Choose a non-separating simple closed curve ρ_{g} on a surface of genus g. Denote by $\iota\left(\rho_{g}, \gamma\right)$ the geometric intersection number of ρ_{g} and γ. The centered and rescaled distribution defined by the counting function $\mathrm{K}_{g}(\gamma)$ tends to the normal distribution:

$$
\begin{aligned}
\lim _{g \rightarrow+\infty} & \sqrt{\frac{3 \pi g}{2}} \cdot 12 g \cdot(4 g-4)!\cdot\left(\frac{9}{8}\right)^{2 g-2} \\
\lim _{N \rightarrow+\infty} & \frac{1}{N^{6 g-6}} \operatorname{card}\left(\left\{\gamma \in \mathcal{M} \mathcal{L}_{g}(\mathbb{Z}) \mid \iota\left(\rho_{g}, \gamma\right) \leq N\right.\right. \text { and } \\
& \left.\left.\frac{\mathrm{K}_{g}(\gamma)-\frac{\log g}{2}}{\sqrt{\frac{\log g}{2}}} \leq x\right\} / \operatorname{Stab}\left(\rho_{g}\right)\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{t^{2}}{2}} d t
\end{aligned}
$$

Consequence 2: local limit theorem

Theorem (Delecroix-G-Zograf-Zorich)
Let $\lambda_{g}=\log (6 g-6) / 2$. For any $x \in[0,1.23)$ we have uniformly in $0 \leq k \leq x \lambda$

$$
\mathbb{P}\left(\mathrm{K}_{g}(\gamma)=k+1\right) \quad=\quad \frac{e^{-\lambda_{g}} \lambda_{g}^{k}}{k!} \cdot\left(G\left(\frac{k}{\lambda_{g}}\right)+O\left(\frac{k}{\lambda_{g}^{2}}\right)\right)
$$

+ Explicit formula for the tail $\mathbb{P}\left(\mathrm{K}_{g}(\gamma)>x \lambda_{g}+1\right)$
Expansion of the moments, in particular:

$$
\begin{aligned}
& \mathbb{E}\left(\mathrm{K}_{g}(\gamma)\right)=\lambda_{g}+\frac{\gamma}{2}+\log 2+o(1) \\
& \mathbb{V}\left(\mathrm{K}_{g}(\gamma)\right)=\lambda_{g}+\frac{\gamma}{2}+\log 2-\frac{3}{4} \zeta(2)+o(1)
\end{aligned}
$$

Consequence 2: local limit theorem

Exact distribution of number of components: $p_{g}(k)=\mathbb{P}\left(K_{g}(\gamma)=k\right)$
Local limit theorem: $\frac{e^{-\lambda_{g} \lambda_{g}^{k}}}{k!} G\left(\frac{k}{\lambda_{g}}\right)$

Comparison with random permutations

	Number of cycles of random permutations [Goncharov], [Hwang] $\mu_{n}=\log n$	Number of components of random multicurves $\lambda_{g}=\frac{\log (6 g-6)}{2}$ $\quad \tilde{G}(t)=\frac{t}{\Gamma(1+t)}$

